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This paper presents a discussion of the application of
data-flow machine concepts to the desiagn and implementation of
database machines which execute relational alaebra queries. We
analyze the performance of multiprocessor nested-loops and sort-
merge join algorithms and show that the nested-loops alaorithm is
generally superior. Three levels of operand granularity for
data-flow database machines are introduced and compared usina the
nested-loops join algorithm. We demonstrate, that relation-level
granularity is too coarse and that tuple-level granularity is too
fine. The third level of granularity, a page of a relation, is
shown to be the best choice from both hardware and software
viewpoints. Finally a preliminary desian for a data-flow data-
base machine which utilizes page-level granularity and supports
distributed control of instruction execution is presented.
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SIGNIFICANCE AND EXPLANATION

A preliminerv architecture of & database machine is
nresented, This architecture uses the presence of data as
the criterion for instruction initiation and control rather
than the instruction's nosition in the proaram. Such a
machine is known as a data-flow machine. The use of data-
flow techniques in datahase machines has bheen shown to be
promisino elsewhere. However, to this date no architecture
usina these techniaues has heen desiqgned. The architecture

presented is onlv a preliminarv one and will most likely
undergo a numher of future chanaes.
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DESIGN CONSIDEZRATION FOR DATA-FLOW DATABASC MACHINES

Haran Boral and David J. DeWitt

1. Introduction

During the past several years we have been investigating the
design and implementation of multiprocessor database machines for
the execution of relational algebra queries. In [1,2] the archi-
tecture of DIRECT, a MIMD database machine, is described. The
prohlem of relation fraamentation and its impact on query execu-
tion time is discussed in [3]. 1In [4], four processor assignment
strategies for MIMD database machines are described and
evaluated., One of the primary results presented in [4] is that
the application of data~flow machine techniques to the processing
of relational algebra queries significantly enhances system per-
formance. The architecture of DIRECT [1,2] is that of a data-flow
machine where all the control functions are centralized., 1In this
paper we intend to present an approach to constructing a data-
flow database machine which supports distributed control.

In Section 2.4, we introduce the basic concepts of query
processing usina multiple processors and data-flow machines. We
analyze the performance of multiprocessor nested-loops and sort-
merge join algorithms and show that the nested-loops algorithm is
generally superior. 1In Section 3.8, three levels of operand
granularity for data-flow database machines are introduced . nd
compared. We demonstrate, that relation-level aranularity is too
coarse and that tuple-level qgranularity is too fine. The third
level of granularity, a page of a relation, is shown to be the
best choice from both hardware and software viewpoints. Section

4.0 contains a preliminary design for a data-flow database

machine which supports page-level aranularity. Our conclusions
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and areas of future research are presented in Section 5.4,

2. Background

2.1. Relational Query Processing

Each relational algehra query is generally comprised of one
or more relational algebra operations (instructions) and is
oraanized in the form of a tree. Fach node, represents an opera-
tion to be performed on a number of relations. Some examples are
restrict, join, append, and delete. Nodes higher up in the tree
operate on relations produced by nodes below them, Fiqure 2.1
contains an example of a typical relational algebra query in the

form of a query tree.

2.1.1. Parallel Join Algorithms

In a relational database system one of the most time consum-
ing operations that must be performed is the join operator. 1In
[5], several alternative join algorithms for uniprocessor systems
are presented and analyzed. The results show that in the absence
of indices (as in NIRFCT) a sort-merge algorithm performs best.
However, for multiprocessor systems we feel that the performance
of the nested-loops alaorithm is superior to that of the sort-
merge alqgorithm. To support this claim we present some intuitive
arguments followed hy a short, informal analvsis of both alao-
rithms,

The multiprocessor sort-merge algorithm employs a parallel
sort of both relations on the joining attribute. This is fol-

lowed by a uniprocessor merge on the joining attribute to perform
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tﬁe join, Our parallel sort uses a binary tree arrangement of
processors as in [A].

The multiprocessor nested-loops algorithm works by Jjoinina
each unit of one (the outer) relation with all of the units in
the other (the inner) relation. If a unit corresponds to a paaqe,
the outer relation 1is n pages long, and there are n processors
available, then each processor can join one page of the outer
relation with the entire inner relation. A unit can also he A
tuple.

We assume that each page of both relations 1is sorted and
that a merge algorithm is used by the multiprocessor sort-merge
algorithm to sort two pages and by the multiprocessor nested-
loops alqgorithm to join two pages. Therefore, the time required
for a processor to process two input pades is the same for both
algorithms and can be disregarded in the following comparison of
the two algorithms, Finally, for the sorting analysis we have
made a number of simplifying assumptions. The most significant is
that after each stage all the processors flush their buffers.
Although optimizations will improve the total execution time the
improvement will not be significant. Disregarding optimizations
makes the analysis easier.

Intuitively the nested-loops algorithm should outperform the
sort-merge since the amount of parallelism that can be attained
is high (limited only by the number of pages in the outer rela-
tion) and can be maintained throughout the duration of the execu-
tion. When sorting in parallel one may be able to start with a

large number of processors but after each stage the number of
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processors decreases whereas the amount of data examined hy each
processor increases until in the final stage one processor must
examine the relation in its entirety.

A second consideration that is not immediately apparent |is
that of cache memory usage. In order for the parallel sort to
execute optimally the complete relation must be kept in the cache
for the duration of the sort. 1In the case of a nested-looms
join, only a portion of the inner relation must he kept in the
cache for the duration of the operation (since once a page of the
inner relation has been seen by all the processors that page
frame can be used for another page of that relation).

The followinag informal analysis verifies our intuitive arau-
ments about the relative performance of the two algorithms. Wwe
assume that the two relations to bhe joined contain n and m pages
and  that n > m, We also assume that there are p processors,
l<p<n, available to perform the join and each processor has a 3
page internal bhuffer: 2 for input and 1 for output. To simplify
the analysis we have also assumed that p,m,n are all powers of 2.

For the multiprocessor nested-loops alaorithm, the execution

time of the join, t is equal to n/p*(1+m). Fach of

nested-loops’

the p processors will each join n/p pages of the outer relation
with all m pages of the inner relation. Thus each of the proces-
sors will read 1 paade of the outer relation followed hy m paqges
of the inner relation. This will occur n/p times.

For the multiprocessor sort-merqge aloorithm, the execution

time of the join, t is equal to t (outer) +

5()l’t

where t = + m. i
merqe’ e merae n m The sort time for
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each relation, tsort equals tsuboptimal + toptimal' where
* = * p)+

(*) tSuhoptimal 2n/p [loa?(n/?p) 11

* % = 4An-

(**) toptimal In-2n/p.

The derivation of (*) follows. At each suboptimal 1level the p
processors do the same amount of work: 2n/p I/0 operations (n/p
reads and n/p writes). At level i, i>#, each processor sees 2
"runs" whose lencoth is Qi—l paaes i.nd produces one run whose
length is ?i paaces. The first optimal Jevel is that level whose
input runs are each of lenaoth n/2p (thus each of the p processors
inputs exactly n/p paages). This is 1level number loqz(n/Zp)+1.
Since we start counting 1levels from @ there are loqy(n/Zp)+l
suboptimal levels.

To derive (**) we note that in each level we do twice as
much work as in the precedina level, We start with n/p reads and
n/p writes by each processor. There are ]onz(Zp) optimal levels.

Thus t is the sum of the loq?(2p) terms 2n/v, 4n/p,...,2n.

optimal
This sum simplifies to 4n-2n/p.
Our two final formulas are then:
= * (1+r
tnested-loops n/p*(1+m), and
= 2n/p*[loq?(n/2p)+1]+4n—2n/p

t
sort-merage
+ 2m/p*[loq?(m/Zp)+1]+4m—2m/p
+ n+m
= 2n/p*loq?(n/2p)+2m/p*loa2(m/2p)+§n+5m
It is clear that as p approaches n, the nested-loops alao-

rithm outverforms the sort-merqge. For very small values of p

(relative to n) the opposite is true. This is as expected since

the wuniprocessor sort-merae alaorithm has nlogn complexity while
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the nest-loops alqgorithm has n2 complexity. Figures 2.2-2.4
present the results of the hehavior of the two algorithms for
three different joins. We see that the nested-loops algorithm
generally outperforms the sort-merae alqorithm when the number of
processors executinag the join is a fairly small fraction of the
Yoptimal" numher of processors for the nested-loops alaorithm
(i.e. the numher of paades in the laraer/outer relation). Tt
should also be noted that at ontimal levels the nested-lnops
algorithm outperforms the =sart-merae accordina to the ratio

(1+m)/S* (n+m) .

2.1.2. Parallel Ipdate Operations

The followina alaorithms are emploved hy DNDIRECT for the
three update operators annend, delete, and renlace. DNeletes are
implemented as neaated restricts. To perform an anpend we exe-
] cute a variation of a merae. e assume that all pages are sorted

on either the key or the entire turle. The tunles to he anpended

y are placed 1in as few pages as possibhle in a sorter order. Fach
E' processor executina the append is aiven a paae of the oriainal
relation and 1in turn all the new nages. The nrocessnor examines
both pages and upon finding a dunlicate tuple it deletes the
tuple from the old pmrae. Finally the new panes are added to the
: relation paage tabhle. Replace is implemented as a modified delete

followed by an append, In each case the rages of the result

relation remain sorted. Fach relation must underao a periodic

reorganizatinn if pages become too sparse.
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2.2. Data-flow Machines

A data-flow machine is an architecture devoid of a program
counter where instructions are enabled for execution as soon as
their operands are present. Such a machine consists of a memory
section, a processing section, and an interconnection device
between the two sections. A memory cell contains an instruction
and room for the operand data. As soon as all the required data
is present, the contents of the cell are sent to some processor
for execution. This frees the cell for the execution of the next
instruction. Output from the processor is sent via the intercon-
nection device to one or more memory cells, possibly enabhling one
or more instruction(s) in the destination cell(s).

Various architectures for data-flow machines have heen pro-
posed [7-11]. These architectures differ from each other in many
wavs. One difference is the granularity of the operands Aand the
types of operations that the processors execute. For example,
NDennis [7] talks about assianing such instructions as add and
multiply to the processors whereas Arvind [8] and Rumbaugh [14]
assign entire procedures to processors.

For data-flow database machines there are also several
alternative variable qranularities for enablinag relational alqge-
bra operators in the query tree. That 1is, the basic wvariahle
used for scheduling decisions can bhe A whole relation, a fraament
of a relation, or a single tuple. In Section 3.4, we will
describe and then contrast each of the these aranularities.

In order to illustrate our ideas we chose to use the MIT

machine ([7] as a model since it is easv to understand and
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describe, Furthermore we feel that althouah the model differs
significantly from others the bhasic results remain unchanged.
The machine organization of Fiaqure 2.5 depicts the model
described in [71. Although later, more sonhisticated, variations
have been describhed in the literature [11] we feel that they Ao
not conceptually differ from the original.

ITn the machine of Figure 2.5 the interconnection mechanism
is divided into two sections. The arhitration network provides a
path from every memory cell to every processor. Enahled cells
travel through it to nrocessors for execution. Result packets
are sent from the nrocessors through the distribution network to

the memory.

2.3. Relational Nuery Processing in Data-Flow Machines

We assume that the instruction in each memory cell
corresponds to a node in the query tree and that the data is
represented by page tables, pointina to pages either in a mass-
storage cache or on mass storace. Thus A relation can also bhe
thouaht of as a stream [(11] of paaes. In order to simplify our
discussion we assume that at the time that a memory cell fires,
the associated data nAaaes are retrieved from a mass-storaae cache
and placed, toagether with the control information, on the arhi-
tration network. Similarly, the distribution network places ont-
put naaes 1n the mass-storaae cache Aand updates the paae tahles
in the tarnet cells.

The nrocessina of queries in n Aata-flow fashion is related

tn the idea nf nrocessina relational aqueries in a nipelined
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fashion which has been previously suqgested by Smith and Chann
[12] and Yao [13]. There are, however, several imnortant Aiffer-
ences between the two approaches. In the pipelined apnroach,
there will be at most one processor executina each node in the
tree and therefore the concurrency ohtained will he 1limited by
the number of nodes in the query tree. 1In the data-flow approach
we can have any number of processors executinqg each node and can
dynamically adjust which processors are executina which nodes in
the query tree in order to maximize performance. The other major
difference 1is that 1in the data-flow approach we never need to
wait for one node to completely finish hefore initiatina the suh-
sequent operator as has been suqggested is necessary for pinelin-

ing [13].

3. Three Operand Granularities for Data~flow Ouerv Processina

3.1. Relation-level Granularity

The coarsest possible granularity for enahling 1instructions
is the relation. That is, a node in the query tree is enahled
for execution only when its source operands have bheen completely
comnuted, Clearlv, if the query is in a tree format, all leaf
nodes are immediately executable. A node hiaher up in the aquerv
tree 1is enahbled whenever all of its Qes~endants have finished

executinag,

3.2. Page-level Granularity

In this annroach » nace of A relatiogn is nsed for ache”ulin-

deciesions. This means that an oneratar can be initiated ag soAn
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as at least one page of each particimatinaga relation exists.

Assigning processors to operate on pages rather than relations
makes it possible to cut down on page traffic hetween the data-
flow machine memory and the mass storage device(s) by distribut-
inqg processors across all nodes of the tree and nipelininag npaaes
of intermediate relations hetween them.

In order to -evaluate data-flow aquery processina which
employs relation-level granularity with page-level qgranularitv a
detailed simulation of DIRECT was implemented [41. While this
simulation measures the performance of each data-flow strateagy on
a multiprocessor organization (1,21 which is not a true data-flow
machine (i.e. it has centralized control), we feel that similar
results would be ohtained if the strateqgies were tested on a
machine with more decentralized control organization.

The followina assumptions were made:

-~ 15K byte operands for instruction nackets

~ LSI-1lls as processors (can read a 15K bhyte naqe in
33ms)

- The data cache is constructed from Intel 2314 CCN chipe

-~ Two IRM 3334 disk drives for mass storaqge of relations

~ A cross-bar switch with bhroadcast cavahilities is used
to connect the processors with the Aata cache. The
cross-har switch is a feature of MNIRECT, not data-flow
NIRECT.,

In [4] a description of the experiments and results is

nresented, Fiqure 3.1 shows the results of the simulation for a

representative henchmark containina ten aueries (? queries with 1

el
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restrict operator only, 3 aqueries with 1 join and 2 restricts
each, 2 queries with 2 joins and 3 restricts each, 1 query with 3
joins and 4 restricts, 1 aquery with 4 joins and 4 restricts, and
1 query with 5 joins and 5 restricts), a relational database con-
taining 15 relations with a comhined size of 5.5 megahytes, and
two CCND cache paae frames for each processor. As illustrated by
this experiment the page-level aranularity outnerforms
relational-level granularity by a factor of about two to one (The
interested reader 1is referred to [4] for results for different
querv mixes). These results seem to verify the benefits of nipe-
lining pages of relations up the auery tree in order to minimize
novement of data between A shared data cache and secondary

memory.

3.3. Tuple-level Granularity

In this anproach a tuple of a relation is the bhasic unit
which is usef? for scheduling decisions. This means that an
operator can he initiated as soon as at least one tuple of each
participating relation exists. As with\naqe-]evel nranulAaritv,
this granularity also offers the nossihility of pimelinina tunles
of intermediate relations between nodes in the query tree. How-
ever, this qgranularitv nplaces unnecessarilv hiah handwidth
requirements on the arbitration network as will be demonstrated
helow.

when the nested-loons join alanrithm is Anplied with tunle-

level aranularitv, each tunle of the outer relation will he

joined with everv tunle of the inner relation. Let the outer




relation he A and the inner relation be R. Assume that the

number of tuples in A is n and the number of tuples in R is m,
Furthermore, assume that each tuple in A and R is 184 hytes lnnn
and that c represents the number of overhead bytes associated
with each instruction that passes through the arbitration net-
work. To execute the join, n*m*(207+c) bytes will have to nass
from the memory through the arbitration network to the processina
section.

Next consider the bandwidth requirements if this same exam-
ple 1is executed using page-level aranularity. Assume that each
page is 19@0A hvtes lonq. Therefore, relation A occupies n/l#
pages and relation B occupies m/1@ pages. Thus n*m* (20 + c/19¢)
bytes must pass through the arbitration network, Fven 1if one
ignores the overhead of sending a packet (which is probably the
same for both granularities), the bandwidth requirements of the
page approach is 1/14 that of the tuple level anproach.

While increasing the page size to 10,4088 bytes will obvi-
ously decrease the arbitration network bandwidth requirements by
another order of magnitude, such an increase mavy have an adverse
effect on aquery execution time because it may reduce the Adenree
of concurrency which is possible. TIf the number of nrocessors
available for «auery execution is approximately eaqual to n * n,
tuple-level aranularity is optimal. We feel that this is unlikelv
as typically the value of n * m will he in the millions. There-
fore for tvpical queries (unless there are millions of nproces-

sors), tuple-level granularity places An unnecessary burdfen on

the arhitration network without an apparent increase in
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performance. Ry sending pages of relations to the processors, 3
similar dearee of concurrency can he achieved while minimizina

network traffic.

4. A Preliminary Architecture for a Data-flow Database Machine

While the architecture of the MIT machine could be used as
the basis of a data-flow database machine, we have identified
several properties which for a databhase machine will unneces-
sarily 1limit its functionality and increase its complexitv. The
MIT machine [7] is designed to permit the simultaneous execution
of the instructions from only one program (or one query). This
clearly is very restrictive for a multiuser, database management
system environment.

Furthermore, we feel that for a database machine the same
level of performance can be achieved with an entirely different
design for the arbitration and Adistribution networks. These net-
works are responsible for instruction initiation and data distri-
bution, The desian of the data distribhution network is rela-
tively straightforward., 1Tts function is to take a result packet
produced by a processor and store it in those 1instruction cells
which are specified in the packet header. The arbitration net-
work, on the other hand, is verv complex. It must continuouslv
monitor all instruction <cells ané nrovide a mechanism for ini-
tiating several enabled instructions simultaneously by routina
the contents of each enabled instruction to A free processor for
execution. "e feel that for Adata-flow database machines these

two netwnrks are too aeneral nurpose ancé consequently excessivelv




DR o o S

18

expensive.

In our approach the instruction memory and the arbitration
and distribution networks are replaced with a small number of
relatively low-performance processors. Fach processor will bhe
responsible for controllina the execution of a few (perhaps onlv
one) relational algebra onerations. Thus control of the execu-
tion of a query is distributed among a set of processors. “hen
an instruction controller (IC) is qgiven a relational alaehra
operation to control it is also given an initial allocation of
processors (called instruction processors - 1IPs) for executing
the instruction. 1f a typical aquery contains five operations,
then fifty ICs can maintain a multiprogramming level of at least
ten in the datahase machine.

Nur approach anpeAars to he viabhle for twn reasons: proaram
size (number of instructions) And execution time of a typical
instruction. Nne freauently mentioned awnplication 7] for data-
flow machines 1is larqge scientific nroarams (e.a. weather ovro-
qrams) . These proarams aenerally consist of thousands of
instructions each of which takes only a few microseconds (or
less) to execute. Even if the instruction onerates on onerands
of type vector, multiple processors can be used to work on indi-
vidual elements and hence instruction execution time will still
bhe 1in the microsecond ranqge. For these applications a larqe
instriuction memory is reaquired to hold the entire nroaram., Since
eAch instruction cell has one innut to the Aarhitration network,

the size nf the arhitratinn network is npromortional to that of

the instruction nemory. The aAarbitration and distribhution
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networks must also he extremely fast. For example, 1if 186 one
microsecond (execution time of a typical instruction) processing
elements are to he kept busy, the arbitration network must be
capable of routing 1918 packets/second.

Relational algehra aqueries, on the other hand, are composed
of relatively few instructions (typically 1-1® operations) each
of which takes a relatively long time to execute (in the mil-
lisecond to second range). Also packets originatina from one IC
are sent to a fixed subset of instruction processors, as, for
example, are the inner relation paades in the join. This permits
us to replace the instruction memory and the two networks with a
set of processors without any loss of performance or functional-

ity.

4.1. Hardware Organization and General Operation

In this section we present one possible desian for 5 data-
flow database machine. Nur purrose in studying this architecture
is to enahle us to learn more about problems associated with
data-flow database machines. This ring-based organization is of
course limited hy the communication medium handwidth. However,
it will later be shown that bhandwidth requirements placed on the
ring for a fairly large configuration are not unreasonable. The
organization contains six major components:

1) The master controller (MC),

2) A set of instruction controllers (IC).

n he

3) A communicatinns rina {(inner ring) which <connects th

master controller with the instruction controllers.

=

e e e e
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4) A mass storage system with a multiport disk cache.

5) A set of instruction processors (IP).

A) A communications.rinag (outer ring) which connects the

instruction processors with the instruction controllers.

The MC serves a number of functions. The first is to handle
communications with the host processor, W“hen a user's guery (in
the form of a gquery tree) is received by the MC it is placed in a
aqueue of queries awaiting execution. “when system resources (ICs
and IPs) hecome available, the MC removes the next auery from the
queue, checks it for concurrency conflicts with other executina
gueries, and then distributes a suhset of the instructions fronr
the aquery to a set of instruction controllers. The other func-
tions of the MC are to corntrol utilization of the disk cache
amona the ICs and to control IP allocation.

Fach IC is responsible for controllina one or more instruc-
tions. Controlling an instruction involves first acauirina a set
of IPs from the MC and then distributing instruction packets (see
Section 4.2) to the allocated IPs. Thus the ICs comrpete with
each other for the processors in the IP pool. The MC is resron-
sible for Aarbitration of the reauests in a manner which maximizes
system performance by insurinag that processors are distrihuter
across all nodes in A auery tree.

Fach IC has & lJocal memorv for paades of source relations
which will bhe used as omerands in the instruction packets it dis-
tributes to the IPs. “hen the local memorv of an 1~ fills, the

1c will write the least desirahle naages to the multinort Aisk

cache. 0One possible ampproach for controlling usage of the Aisk
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cache is to divide it amona the ICs accordina to the number of

IPs each is controllina. Wwhen an I7 fills its segment of the ]
disk cache, npages will bhe swapped out to disk. Thus, the IC

local memory, the disk cache, and the mass storaqe devices form a i
three-level storaage hierarchv.

IPs are responsible for executina instruction packets which
are mnlaced on the outer rina by the TCs, When an IP receives an
instruction packet addressed to it, it ©performs the operation
specified 1in the packet *d then produces an outnut packet. The
IP then places the outnput packet on the outer rinag and sends it
to the TIC which 1is resnonsible for controllina the suhseaquent
operation in the query tree. Thus, the TIPs and the outer ring
form a distributed distribution network for result packets.

The inner rina, as has been discussed abhove, is used
exclusively for distrihution of instructions and other control :
messaaes by the MC, <Since the messaaes reauired for such activi-
ties are small and limited in number, » bandwidth of 1-2 million
hits per second (Mhps) should he sufficient,

The outer rina, on the other hand, is use” for distribution
of instructions and result packets hv the TCs Aand IPs. Fiacure
4.2 represents the handwidth requirements of DIRFCT [4] with
naqge-level qaranularity for the test data described in Section
3.2. The handwidth for each nof the different nprocessor levels
was obtained by Aividina the total numher of hvtes transferred hy
v the execution time nf the bhenchmark containing ten aueries,

r Thus, the »andwidth values represent Aaveraade values and not peak

ﬁ loArd wvalues. (The bPandwidth reauirement for 70 nbprocessors
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represents a scheduling anomaly which is also reflected in Fiaure
3.1). ]
There are several possible technoloaies for the rina oraani-
zation which we intend to investigate. One possible techpoloav
is that which is used in the Distributed Loop Computer Network
[14]. This network employs a technique known as shift-reaister
insertion and can handle the transmission of variabhle length mes-
saqges. A ring bandwidth of un to 40Mbps can be obtained in this
fashion. Some alternatives are loops constructed usina either
fiber optic technoloqgy or broadband coaxial technoloay. Fiber
optics can support bandwidths of 404 Mbps [151 and should he
commercially available in the next 5-1f years. Rroadhand coaxi?l ;

technolooy is claimed to be capable of 140 Mhps.

4.2, Instruction Control and Execution

When an instruction is assigned to an IC it can be in one of
two states. If the instruction's operands are source relations
in the database, then the instruction is ready to be executed. In
this case the MC will also send to the IC a paage table describina
each operand. Ntherwise, if the instruction is not enabhled, the
IC will first create a page table for each opnerand of the
instruction and then wait for paaes of the source operand(s) to
arrive from IPs heina controlled by another IC. As paaes (which
may not be full) arrive, they are compressed to form full naces
[31 and then stored in the IC's local memory or its seamepnt of

the Aisk cache, *

When an IC is ready to initiate the execution of an instruc-
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tion (i.e. at least one page of each operand is present), the IC
first sends a control packet to the MC which requests an initial
allocation of 1IPs and disk cache page frames. If the requested
allocation cannot be fully satisfied, the MC will respond with a
list of the 1IPs and page frames which are currently available.
When another instruction has terminated, the MC will send the
remaining requested resources to the IC.

The packet format of instruction packets sent by an IC to
one of its 1IPs is shown in Fiaure 4.3. The destination of the
packet is controlled by the IPid field. It is important to note
that since packets are not fixed lenath, it is possible for the
IC to send varyina size data pages as source operands, In this
way maximal concurrency can be achieved while the bandwidth
requirements of the communications medium are minimized.

Upon receipt the IP applies the operation code to the data
pages contained in the packet. Tuples of the result relation are
placed by the IP in an internal huffer, The IP informs the con-
trolling IC that it is done by sendina it a control packet (Fio-
ure 4.4)., The IC can respond by either sendina additional pack-
ets or hy releasina the IP, When the IP's internal) buffer fills
or when the flush-when-done flaa of the instruction packet is on,
the 1IP sends the contents of its buffer in a result pecket (Fia-
ure 4.5) to the destination I specified in the instruction
packet. The controllina IC will turn the flush-when-Aone flaa on
when it expects the outaoing packet to be the last one which will

be sent to the IP.

When an IP first receives an instruction packet for a fJoin

Antia
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operation, it sets up an "inner-relation control" (IRC) vector

with one entry for each page of the inner relation. (Initially
this vector will have only one entry, but the vector will arow as
execution of the instruction proaresses.,) After the IP has joined
the first paae of the outer relation with the first page of the
inner relation (the two operands in the packet), the IP will send
8 "done" control packet to the controllina I”. 1Included in this
packet will be A request for the second page of the inner rela-

tion. The 1IC responds to this request by bhroadcastina the

reqguested paage to all IPs which are executina the ijoin., (An IP
can determine if A broadcast packet is meant for it by examinina
the Ouery ID field of the packet). <Subseauent reauests for the
same pagde which are received by the 1C "soon" afterwards can he
ianored.

Each TP which receives the broadcast packet can be in one of
several states. If the IP has already sent or is abhout to send a
request for the same paae to the IC, then the TP can proceed to
join the new paade of the inner relation with its current pane of
the outer and update its IRC vector appropriately, If the 1P
does not have room in its local memory for the bhroadcast paaqe, it
will iqgnore the nacket. However, the followina scenario mav
occur. Recause its local huffer is full, an IP ianores pane i of
the inner relation, wWhen broadcast paae i+l is received (hefore
it or pade i has been solicited hy the TP), the TP will read paae
i+l and use it as an operand paAane, This situation cAn continue
nntil a nacket is received which indicates that this is the last

paade of the inner relation, At this point each TP will examine

proeny S Amiadhno
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its IRC vector and then proceed to request those paaes which it
missed. When the IP has joined the current page of the outer
relation with all the pages of the inner relation, it will first
zero its IRC vector and then sianal the IC that it is ready for
another pacge of the outer relation which has not yet been distri-
buted to an IP, 1In this way messaae traffic on the ouvter rino
is minimized and vyet correct operation of the Jjoin can be

quaranteed.

5. Conclusions and Future Research

In this paper we have presented the use of Aata-flow machine
techniaques for the processing of relational algebra queries. The
performance of two multiprocessor join alcorithms was analyzed
and it was shown thet the nested-loops alaorithr is aenerally
superior to the sort-merae alaorithm. We have also discussed
alternative operand granularities for data-flow database machines
and have demonstrated that page-level oranularity 1is the best

choice for optimum system performance. A preliminary desian for

a data-flow database machine which utilizes paage-level aranuler-
ity Aand supports distributed control of instruction execution has
heen described.

There are several features of our proposed desian with which
we are not completely satisfied and which warrant further inves-
tiaation., 1In particular, we feel thet it should be possible to
route some of the data pages which are produced by IPs directlv
from one IP to another without first sendina the paade to an IC.

Thus, instruction execution control would be distributed further.
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If such an approach could he successfully designed and imple-
mented message traffic on the outer ring could bhe further
reduced. There appears, however, to bhe a tradeoff between
decreased messaqe traffic and increased IP complexity which needs
further examination before the correct approach can be chosen.

Another area of research which we intend to pursue is con-
currency control mechanisms for data-flow database machines. 1In
our current design, the MC is responsible for all concurrency
control. We intend to investigate a distributed mechanism in
which the ICs and not the MC would be responsible for concurrency
control. One can view a data-flow database machine (such as
described in Section 4.0) as a "local" distributed database sys-
tem in which the ICs correspond to distributed centers of query
execution and control. As a first step we intend to examine the
mechanisms which have been proposed for concurrency control in
distributed database systems to see if they are applicable. We
intend to evaluate the performance of each of these algorithms to
determine how each performs in a "local" environment. Then based
on our findings we will either adopt one of the existinag a2lao-
rithms or attempt to develop a new alaorithm which takes advan-
tage of the "local" nature of the ICs,

While the rina architecture we have proposed seems to
satisfy the organizational requirements for data-flow database
machines, the reaquirement for a high bandwidth communications
medium may not be realistic for a larae number of IPs. The other
MIMD database machines which have heen proposed have depended on

processor-memory interconnections in complexity of ﬂ(nz) (1,21 to




O(nlogn) [15-17]. We feel that the nN(n) nature of the ring

organization 1is the best 1f high (140 Mbit) bandwidth rings

become available. However, we intend to investiaate other pro-

cessor interconnection strateaies for data-flow datahase machines
which satisfy the reauirements specified in Section 4.4 yet which

can be constructed from existina technoloaies.
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